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Abstract—The paper investigates on canonical references
used for local surface description and matching. We formulate
a novel proposal and carry out an extensive experimental
evaluation addressing two major surface matching scenarios,
namely shape registration and object recognition. We provide
also a methodological contribution as, unlike previous work in
the field, we propose a repeatability metric that captures the
actual impact of the adopted local reference frame algorithm
within surface matching tasks based on local 3D descriptors.
Our proposal outperforms existing algorithms by a wide
margin on several datasets acquired with different devices,
such as laser scanners, stereo cameras and the Kinect, and
in experiments relying on randomly extracted feature as well
as state-of-the art keypoints.

Keywords-local reference frame; surface matching; 3D de-
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I. INTRODUCTION

Object recognition and surface registration are two fun-
damental tasks in 3D computer vision. The former concerns
determining the presence of 3D objects and estimating their
poses in scenes acquired by 3D sensors. The latter is the task
of aligning partial 3D views of a given object acquired from
different vantage points. Both ground on surface matching, a
challenging problem involving the search for corresponding
surface elements. As global approaches can hardly deal with
nuisances such as clutter, occlusions and missing regions,
recent research has been mainly focused on the definition of
descriptors that encode the neighborhood of 3D points into
distinctive and robust representations to discover correspon-
dences between surfaces. An essential trait of such local 3D
descriptors is the invariance to 3D rotation. In the last fifteen
years a remarkable number of local 3D descriptors have
been designed, most of them [1]–[11] achieving invariance
to rotation by establishing a Local Reference Frame (LRF)
and describing the neighborhood (also support) according to
LRF coordinates.

Both [8] as well as, more extensively, [12] have recently
highlighted the importance of the algorithm used to establish
the LRF, showing how its repeatability significantly impacts
the effectiveness of a surface matching process based on
local 3D descriptors. In particular, [12] proposes an evalua-
tion of LRF algorithms carried out on a large 3D data corpus
acquired by different laser scanning devices and focused on
the surface registration task. Besides, [12] proposes a novel

approach (hereinafter referred to as Board1) that delivers
state-of-the-art performance.

In this paper we improve the investigation and evaluation
on LRF algorithms proposed in [12]. As a first contribution,
we extend the collection of datasets and methods considered
in the experiments. In particular, in registration experiments
we add seven datasets acquired by means of two different
low-cost acquisition system, namely a Spacetime Stereo set-
up and a Kinect device. To fill up the lack of object recogni-
tion experiments in [12], we evaluate the performance of the
methods on three 3D versus 2.5D object recognition datasets
characterized by different levels of clutter, occlusion, point
density and noise. As for methods, besides those compared
in [12], we consider also a recent proposal by Dos Santos et
al. [14]. As a second contribution, we propose a novel metric
to characterize the performance of LRF algorithms. Indeed,
based on experimental analysis, we observed that, in practi-
cal surface matching tasks, local descriptors completely lose
their distinctiveness (i.e. yield wrong matches) as soon as the
LRFs at corresponding features get misaligned, which means
that the actual misalignment above a certain degree turns out
irrelevant for the specific purpose of surface matching. This
effect can be perceived clearly in Fig.1 of [12], wherein
each descriptor loses completely its matching power as the
misalignment gets above a certain degree (and, overall, all
are useless as the misalignment gets over about 25 degrees).
In other words, as far as surface matching is concerned,
two LRFs at corresponding features are simply aligned (so
that the features hold the potential to be matched) or not
(and so the features will hardly be matched). Therefore,
unlike [12] which quantifies repeatability based upon the
mean rotation error between LRFs at corresponding feature
pairs, we propose a metric which aims at estimating the
percentage of aligned LRFs (i.e. of potentially matchable
features) yielded by the considered algorithms. Finally, as
third contribution, we introduce a novel LRF algorithm
that synthesizes the key strengths of the other considered
methods. The experimental results, within both the object
recognition and registration scenarios, show coherently that
the proposed algorithm significantly outperforms all known
methods, according to both the repeatability index adopted
in [12] as well as the new metric introduced in this paper.

1According to the name given to this method in the available implemen-
tation within the PCL library [13]



II. CONSIDERED METHODS

In this section, we describe how to compute the LRFs
considered in our study. Most of them are based on the
computation of the eigenvectors of a covariance matrix of
the 3D coordinates of the points, pi, lying within a spherical
support of radius R centered at the feature point p.

Mian [15]: the unit vectors of the LRF are given by the
normalized eigenvectors of the covariance matrix:

Σp̂ =
1

k

k∑
i=0

(pi − p̂)(pi − p̂)T (1)

where p̂ denotes the barycenter of the points lying within
the support:

p̂ =
1

k

k∑
i=0

pi (2)

However, while the eigenvectors of (1) define the principal
directions of the data, their sign is not defined unam-
biguously. To partially solve this problem, the z axis is
disambiguated by computing the inner product between n
and the two possible unit vectors z+ and z−, so as to choose
the unit vector yielding a positive product 2.

SHOT [8]: to avoid computation of (2), the barycenter
appearing in (1) is replaced with the feature point. Moreover,
to improve repeatability in presence of clutter in object
recognition scenarios, a weighted covariance matrix is com-
puted by assigning smaller weights to more distant points:

Σpw =
1∑

i:di≤R

(R−di)

∑
i:di≤R

(R−di)(pi−p)(pi−p)T (3)

with di = ‖pi − p‖2. To achieve true rotation invariance, a
sign disambiguation technique inspired by [16] is applied
to the eigenvectors of (3). In particular, the sign of an
eigenvector is chosen so as to render it coherent with the
majority of the vectors it is representing. To deal with the
case of an even number of vectors, the implementation
available in the PCL library [13] relies on the following
procedure: points pi are sorted by their distance to p and
the median point is found. Hence, in case the initial set of
points is even, only the median, the 2 preceding and the 2
following points are used to apply the disambiguation. The
disambiguation is applied to the eigenvectors associated with
the largest and smallest eigenvalues, in order to attain the
unit vectors defining, respectively, the x and z axes. The third
unit vector is computed via the cross-product z × x.

PS [2]: the LRF associated with the Point Signatures
descriptor is defined as follows. The intersection of the
spherical support with the surface generates a 3D curve, C,
whose points are used to fit a plane. The z axis is directed
along the normal to the fitted plane. In order to disambiguate

2We knew of the presence of the z axis sign disambiguation step, not
specified in the paper, by a personal communication with the author.

z axis, the same method adopted by Mian is applied. The
x axis is attained by defining a signed distance from the
points belonging to C to the fitted plane. Points that lie in
the same half space as the normal to the fitted plane are
given a positive distance, those lying in the opposite half-
space a negative distance. The point with the highest positive
distance is then selected, and the projection on the fitted
plane of the vector from this point to the feature point p
defines the x axis. As usual, the third axis is computed via
cross-product.

MeshHog [11]: support points, pi, are determined based
on the geodesic rather than Euclidean distance. The z axis is
robustly estimated by the mean of the normals of the 5-ring
neighbourhood of point p. The identification of the x axis
is inspired by SIFT [17]. At each pi, the discrete gradient
∇Sf(pi) is computed, f(pi) being the mean surface curva-
ture. Gradient magnitudes are added to a polar histogram
of 36 bins (covering 360◦) and weighed by a Gaussian
function of the geodesic distance from p, with σ equal to
half of support radius. To deal with aliasing and quantization,
votes are interpolated tri-linearly between neighboring bins.
While in SIFT histogram bins are filled according to gradient
orientation, in [11] points pi are projected onto the tangent
plane defined by n and the orientation with respect to a
random axis lying on such a plane is considered. Then, the
chosen x axis orientation is given by the dominant bin in
the polar histogram. At last, y is computed as z × x.

DosSantos [14]: as pointed out in [12] and [14], the SHOT
LRF is negatively affected by the uneven distribution of
points within the support due to acquisitions from angularly
distant vantage points. To reduce this effect, dos Santos et
al. build an approximation of the covariance matrix by using
point normals, instead of coordinates, weighted by influence
areas of points (implemented as voronoi areas). The x and
z axes disambiguation is obtained by orienting the two unit
vectors toward the biggest influence area of the support.
Finally, y is attained as z × x.

Board [12]: in order to robustly estimate the z direction,
the method fits a plane to the points within a small support
of radius 5 × the average mesh resolution (hereinafter mr ).
To disambiguate the sign, the method computes the average
normal, ñ, over support points and chooses between z+ and
z− so as to get a positive inner product with ñ. The x axis
estimation relies again on surface normals. For each point pi

with distance to p larger than 0.85 × R, the angle between
its normal ni and the z axis is computed. The x axis is
directed from p towards the point pmin that reveals the
largest angle. Finally the axis is projected onto tangent plane.
For the sake of robustness, instead of strictly considering ni,
the average normal over the 2-ring neighbourhood of pi is
computed. Board tries also to overcome a peculiar problem
of partial shape matching that affects feature points extracted
near the borders of the views. These points show missing
regions within the support that significantly deteriorate the



repeatability of the LRF computation. To deal with this issue,
the method deploys a heuristic, consisting of three stages,
aimed at assessing whether pmin would lie in a region
actually missing in the case the support were complete. In
the first stage, missing regions are identified. The second
estimates whether one missing region could contain pmin by
evaluating the angle of normals na and nb of the two points,
pa and pb, at the boundaries of the considered region. If na

and nb are sufficiently inclined, the last stage estimates the
position of pmin in the missing region based again on the
angles of na and nb and on the consideration that, intuitively,
pmin is closer to pa if the angle of na is greater that the
angle of nb and vice versa.

III. PROPOSED METHOD

In our study we introduce a novel method (hereinafter
P) aimed at exploiting those traits of the other approaches
that turn out more beneficial in the definition of a repeatable
LRF. As shown in [12], the way Board computes the z axis
is the most repeatable, so we rely on the same procedure.
Unlike methods based on the covariance matrix, which
exploit all the support for the computation of the z axis,
Board exploits only a small subset of points (depicted in
blue in Fig.1) centered at the considered feature point. This
enables better handling of nuisances such as clutter and
occlusions that may alter the shape of the whole support and
render unstable the estimation of the z axis. This approach
makes the estimation of the z axis robust to noise as well as
stable regardless of the wider extension of the support used
for estimation of the x axis. This feature is crucial, since,
likewise other methods such as PS, Board and MeshHog,
with our proposal the computation of the x axis depends on
that of the z axis.

Figure 1. An example helping to describe the proposed method.

Regarding the x axis, again similarly to Board, we con-
sider only a subset of points pi lying at the periphery of the
support (depicted as red points in Fig.1. This, together with
the small support used for the z axis, provides also good
scalability with respect to the size of the support radius.
Whilst in approaches such as MeshHog, and methods based
on covariance matrixes alike, all support points contribute

Figure 2. Comparison between Board (top) and the proposed method P
(bottom) on the same two corresponding points extracted from two partial
views. x axes are shown as red arrows, y axes are in green whilst z axes in
blue. In the figures, the LRF found at the point is opaque whereas the LRF
found in the other view is overlaid semi-transparently for comparison. In the
figures concerning Board, the behaviour of surface normals is illustrated
by assigning a darker blue to points having normals more inclined with
respect to the z axis, whereas for the figures regarding P points with higher
signed distances are denoted by brighter purple. Yellow spheres indicate
the support points chosen by the methods to define the x axis. Whilst
Board selects two different points (due to the similar degree of the normal
inclinations), P coherently identifies the same characteristic point.

to establish the direction and sign of the x axis, in Board
and PS only a single highly distinctive point is identified
to define where to point at the x axis. Accordingly, these
approaches tend to be more robust to point density variations
and missing regions. Unlike Board, which identifies the
characteristic point based on point normals, our proposal
grounds its choice on the signed distance to the tangent
plane defined by the z axis and p. Precisely, the x axis
is given by the normalized projection onto the tangent plane
of the vector from p to pmax, the latter being the point
within the periphery of the support showing the largest
signed distance (D in Fig.1) to the tangent plane. Our
experimental analysis has shown that the signed distance is
a more distinctive cue than the normal and hence provides
higher repeatability especially on flatter supports, i.e. at
surface patches where the detection of a repeatable tangent
direction is more challenging. Furthermore, signed distances
are direct measurements related to the shape of the support,
whereas normals represent their derivatives and as such tend
to be more sensitive to noise. Board deploys a heuristic to
cope with the issue of missing regions in proximity of the
borders of a partial view, while our algorithm inherently
handles this nuisance as points close to the borders of a
view tend to exhibit lower signed distances than points closer
to the center of the view. Fig.2 shows how the proposed
method can capture better than Board the peculiar shape of
the surface and, hence, better identify the characteristic point
to establish the x axis.



IV. EVALUATION METHODOLOGY

To compare the methods described in previous sections,
we extend and enrich the evaluation presented in [12]. In
particular, we formulate a novel proposal for the metric
adopted to assess the performance of LRFs and consider
also a 3D object recognition scenario, together with further
datasets for partial shape registration experiments.

In [12] only datasets acquired by different type of laser
scanners were considered. However, the broad use of low-
cost acquisition systems in the last years calls for evaluating
algorithms also on datasets acquired by such devises. So,
we add to the collection of publicly available datasets used
in [12] for registration experiments, 3 datasets acquired
by a Spacetime Stereo set-up (MarioStereo, DuckStereo,
FrogStereo) and 4 datasets acquired by a Kinect device
(MarioKinect, DuckKinect, FrogKinect and SquirrelKinect).
For each new dataset we obtained the ground truth by
carrying out a manual coarse registration followed by a
global refinement by means of Scanalyze3.

As for the general methodology, we mainly follow the
procedure suggested in [12], in which, given a view pair,
a set of corresponding points are extracted by relying on
ground truth rototranslation and, then, the related LRFs
are computed. In order to evaluate the repeatability of a
method on a dataset, misalignment errors are computed
for every pair of corresponding LRFs so as to obtain a
repeatability index by averaging misalignment errors: first
across all corresponding LRFs of a view pair, then over all
view pairs. In our present evaluation we have introduced just
a few adjustments. First, we discard view pairs that show an
overlapping area lower than 10%, instead of relying on the
number of extracted feature correspondences. Furthermore,
while for experiments on randomly extracted features we
adopt the same procedure as in [12], in the experiments
relying on keypoints we make use of the ISS detector [6]
rather than MeshDog, as the former has provided superior
performance and a significantly faster speed in a recent
evaluation [18]. Moreover, we extract features at 4 different
scales, (5, 10, 20, 30) × mr , from all dataset views, then,
for each view pair (V1, V2), we apply the ground truth rigid
motion to each feature point pi,2 of V2 so as to check if a
feature point pi,1 in V1 is closer than 8 × mr from pi,2

4.
We consider as corresponding those feature pairs (pi,1, pi,2)
satisfying such condition. We choose this procedure so
as to account also for a possible imprecise localization
of feature points when assessing the performance of LRF
algorithms. Both on random features and ISS keypoints, the
LRFs are computed by using a large set of radii R, i.e.
(5, 10, 20, 30, 40, 50, 60)×mr .

3http://graphics.stanford.edu/software/scanalyze/
4This stems from experiments carried in our Lab showing that in many

diverse scenarios 8 × mr turns out a good inlier threshold to estimate 3D
rigid body transformations within a RANSAC paradigm

The most remarkable variation with respect to the method-
ology proposed in [12] concerns the metric to compute the
performance, i.e. the repeatability, of the LRF algorithms at
corresponding points. In [12], given a pair of views V Pn,
for each point correspondence i, the index MeanCos′i,n
is computed as the average between the alignment error
of the x and z axes. This index properly represents the
rotation error between two LRFs computed by an algorithm
at corresponding points. Nevertheless, as already pointed out
in Sec.I, we found that the degree of misalignment between
corresponding LRFs does not capture effectively the kind
of ”on-off” behavior of LRF algorithms with respect to
the descriptor matching process. Indeed, corresponding de-
scriptors keep their distinctiveness and thus can be matched
effectively only in case the established LRFs are very well
aligned. Conversely, if corresponding LRFs are misaligned,
it does not really matter in practice how large is the actual
rotation error, as description is so corrupted that features can
no longer be matched. Hence, for each point correspondence
i of view pair V Pn, we attempt to evaluate whether the
computed LRFs can be considered aligned or not. Purposely,
we calculate MeanCos′i,n as in [12] and then define a novel
performance index as follows:

Ai,n =

{
1, MeanCos′i,n ≥ TA
0, MeanCos′i,n < TA

(4)

where TA is a threshold that discriminates between aligned
and misaligned LRFs. In principle such a threshold is some-
how descriptor-dependent, given that different descriptors
may tolerate different degrees of misalignment, owing to
their own nature as well as the setting of parameters. For
example, following the taxonomy in [8], signatures are
inherently more sensitive than histogram-based methods to
the degree of alignment of LRFs (as also vouched by the
plot of Fig. 1 in [12])), and the chosen bin size might impact
notably the ability of the latter to tolerate a given amount of
misalignment between corresponding LRFs. Nonetheless, as
it will be shown in Sec.V, the threshold chosen to distinguish
between aligned and misaligned LRFs does not affect the
relative ranking between LRF algorithms, so that here we
can arbitrarily set TA = 0.97.

To define a global figure of merit concerning a specific
dataset, we follow the same approach as proposed in [12] to
get the global index MeanCos′. First, Ai,n measurements
are aggregated by averaging across all point correspondences
i to attain the percentage, Ān, of aligned LRFs for view pair
V Pn. Then, Ān figures are aggregated again by averaging
over all view pairs to get the final index Ā.

In object recognition experiments we use 3 different kinds
of datasets. To evaluate the methods on detailed shapes,
we run the experiments on the well-known Mian dataset
[15], which was acquired by the Minolta Vivid 910 laser
scanner. This dataset consists of 5 models and 50 cluttered



and highly occluded scenes. To compare the methods also on
less accurate and noisier data, we rely on the Kinect dataset
[18], that is made up of 6 models and 27 scenes, again
with significant clutter and occlusions. Finally, we consider
a synthetic dataset (Virtual Stanford), which presents a lower
amount of clutter. We created 50 different scenes by placing
at random (but avoiding surface intersections) 3, 4, or 5
models belonging from the Stanford 3D Scanner Repository
[19] and acquiring, for each scene, 6 views from different
vantage points by way of a software tool that simulates
the Kinect device according to the guidelines provided in
[20]. Given a vantage point, a 640×480 pixels depth-map is
generated by ray casting, then Gaussian noise is added and
z-coordinates are quantized, with both the noise variance
and the quantization step increasing with distance. Bilateral
filtering is then applied to the depth maps before the actual
processing to smooth out noise and quantization artifacts.
As for the methodology, we introduce two differences with
respect to object recognition experiments. Firstly, as clutter
disrupts repeatability with wide supports, we run experi-
ments up to a smaller maximum radius (i.e. 50 × mr ).
Secondly, while in shape registration we compute Ān by
aggregating Āi,n over all the corresponding features of
a view pair V Pn, in object recognition experiments we
aggregate Ai,s across all corresponding features extracted
from scene s, so that then the global index Ā is achieved
by aggregation of the Ās across all dataset scenes.

V. EXPERIMENTAL RESULTS

This section reports the experimental results obtained by
the considered methods on all datasets. Both in the registra-
tion and object recognition scenarios, for each method the
experiments have been run across all the considered support
radii and the radius yielding the highest repeatability has
been chosen to define the score associated with the method.

Fig.3 shows the repeatability of LRF algorithms in the
task of partial shape registration by using randomly detected
feature points. The Figure reports the scores with respect to
the index MeanCos′ adopted in [12], which measures the
mean rotation error between corresponding features, as well
as those achieved by the metric denoted as Ā proposed in
this paper, which instead estimates the percentage of aligned
LRFs and disregards the actual rotation error found in
misaligned ones. First of all, the charts coherently highlight
that the method proposed in this paper (referred to as P)
neatly overcomes the other proposals on every dataset, with,
in particular, a percentage of aligned LRFs most often above
60 % in the laser scanner datasets and above 50 % in the less
detailed and nosier Space time stereo and Kinect datasets.

It is worth pointing out that the proposed algorithm
provides consistently an increase between 20 to 30 % of
aligned LRF (i.e. matchable features) with respect to the
second best method in each experiment. As found also in
[12], PS and Board exhibit good performance, also in the
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Figure 3. Results of registration experiments with randomly extracted
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that maximizes Ā. The 3 topmost figures refer to the laser scanner dataset
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proposed in this paper.



new datasets. However, in both types of datasets PS tends to
outperform Board according to the new repeatability metric.
The recent method by DosSantos, conceived to deal with the
issue of local point density variations discussed in [12], turns
out quite effective and achieves performance that, according
to the new metric Ā, are overall comparable to Board.

Compared to the results achieved on laser scanner
datasets, the results on the datasets acquired by the Space
time stereo and Kinect devices show degraded performance,
which prove that, in general, all LRF methods are notably
affected by the quality of the scanning devices.

Fig.4 reports the results in case of ISS keypoints. The
charts basically confirm the ranking attained on randomly
extracted features and prove the neat superiority of the
novel proposal. Interestingly, although one might guess that
keypoints would identify more distinctive surface patches
than random features, so that, accordingly, LRF algorithms
should inherently exhibit higher repeatability, for all methods
the scores in Fig.4 turns out always slightly worse than
in Fig.3. This is due to the peculiar nuisance of imprecise
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localization injected in the experiments with keypoints (as
discussed in Sec.IV ), which shows a higher impact than the
saliency of surface patches and overall lowers repeatability
with respect to the case of randomly extracted (but precisely
localized) features.

Concerning the radii that maximize repeatability, it
emerges that, for the majority of datasets, P tends to use the
widest supports, similarly to MeshHog and Board and, once
in a while, SHOT. Conversely, PS, Mian and DosSantos rely
on smaller radii. To better understand this behavior, Fig.5
plots the relation between the repeatability scores of the
methods and the radius. Clearly, P strongly improves as the
radius increases, as it is also the case of Board and MeshHog
- though according to a milder trend. This is due to the
way these methods compute the z axis. In fact, all of them
rely on a smaller support, whereas the others use the entire
supports that, in particular for large radii, can vary widely
due to the presence of missing regions and, hence, rendering
unstable the computation of the axis. SHOT suffers less this
effect because of the weighting of covariance matrix with
respect to point distances. It is worth noting the difference in
performance between Board and our proposal even if they
share the computation of z axis. Evidently, as the radius
increases, the distance from the tangent plane turns out a
more distinctive cue for a point than its normal direction.

The results related to the object recognition scenario,
depicted in Fig.6, are coherent with the findings provided by
registration experiments. In fact, P turns out consistently the
most repeatable method (according to both the considered
metrics), followed again by Board, PS and DosSantos. Com-
paring the results between the three datasets, the methods
exhibit overall higher repeatability on Mian. This is to be
ascribed to the different accuracy of the considered datasets.
In fact, consistently with the shape registration scenario,
the low-quality acquisition systems used for Kinect and
Virtual Stanford datasets (made up, respectively, of real
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Figure 6. Results related to object recognition experiments. Randomly
extracted features (left) and ISS keypoints (right).

and synthetic data) render the estimation of LRF a more
challenging task.

For P, and the other methods that take advantage of the
estimation of z axis on a smaller support alike, it is worth
noticing that the radii that yield the highest repeatability are
strongly correlated with the level of clutter and occlusions
of the datasets. Indeed, whereas with Virtual Stanford these
methods can exploit larger radii, the higher degree of clutter
and occlusions in Mian and Kinect limits the extension of
the support that can be deployed by the methods.

As discussed in Sec.IV, the metric Ā we use for the
evaluation of the repeatability depends on the threshold TA
chosen to establish aligned upon misaligned LRFs, with such
a threshold being in principle related to the descriptor used
to match the features, given that different descriptors may
tolerate different degrees of misalignment. However, Fig.7
plots, in the case of the Amphora dataset, the trend of Ā
vs TA. Such curves indeed turn out all very similar for
every dataset and clearly show that, even though, obviously,
repeatability scores increase as the threshold decreases, the
ranking between the different LRF algorithms holds com-
pletely steady and hence is independent of the actual value
chosen for the threshold TA. Consequently, Fig.7 suggest
that the proposed method is the best LRF to be deployed
with any descriptor, as it always tends to provide the higher
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Figure 7. Repeatability scores on Amphora dataset as the threshold TA

changes.

percentage of aligned canonical references irrespective to the
degree of misalignment tolerated by a specific descriptor.

With regards to computational efficiency, Fig.8 shows the
average computation time (in ms) to estimate a LRF as
a function of the support radius. Mian proves to be the
fastest method, even if the differences with P and SHOT are
minimal. Whereas PS ranks in the middle, DosSantos, Board
and MeshHog prove to be, orderly, the slowest methods.
DosSantos and Board pay for the searching of adjacent
points that are used to, respectively, compute the voronoi
areas and robustly estimate the normals. PS, instead, is
penalized by the estimation of the curve used to fit the plane,
whilst MeshHog is mostly slowed down by the definition
of the support based on the geodesic rather than Euclidean
distance. Unlike the results in [12], Board turns out slower
than PS. This is mainly due to the poor scalability of Board
with respect to the wide radii we consider in our evaluation5.
As previously discussed, P outperforms significantly all the
other methods as it can better exploit the distinctiveness
emerging from wider supports. Nonetheless, the employment
of large radii does not harm its efficiency as the use of
a small percentage of points lying at the periphery of the
support yields good scalability with respect to the radius
size and renders its computation effort comparable to that
of the fastest (but dramatically less repeatable) method.

VI. CONCLUSION AND FUTURE WORK

Our study highlights that, among evaluated methods, the
proposal described in this paper is neatly the state-of-the-art
solution for 3D local descriptors deploying a local reference
frame. As a matter of fact, our method outperforms other ap-
proaches by showing the best repeatability in registration and
object recognition scenarios, both with randomly extracted

5Furthermore, our current implementation of PS is more optimized than
that used in [12].
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features as well as keypoints provided by a state-of-the-art
3D detector. Moreover, the effectiveness of our proposal has
been assessed based on two distinct figures of merit. The
first is the mean rotation error proposed in the paper that
first provided an extensive experimental evaluation of LRF
algorithms [12]. The second is a more ”application oriented”
metric introduced in this paper, which aims at estimating
the percentage of correctly aligned LRFs and allows for
ranking the algorithms independently of the actual degrees
of alignment required by different descriptors.

The novel proposal grants a remarkable percentage of
correctly aligned LRFs both on registration as well as object
recognition experiments. Moreover, it is interesting to note
that every single point correspondence, together with its
aligned LRFs, defines the rigid-motion that would allow
for aligning two views in a registration task as well as
to estimate the pose in an object recognition task. All
this consistent data may be sifted out by means of robust
estimators, such as e.g. RANSAC or 3D Hough voting [21],
in order to end up with the sought transformation. Hence,
we are currently investigating on the definition of object
recognition and shape registration pipelines that would not
require the standard description stage to match features but
instead leverage only on the fast and reliable local orienta-
tion information provided by the LRF algorithm described
in this paper.
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